17 research outputs found

    Many projectively unique polytopes

    Full text link
    We construct an infinite family of 4-polytopes whose realization spaces have dimension smaller or equal to 96. This in particular settles a problem going back to Legendre and Steinitz: whether and how the dimension of the realization space of a polytope is determined/bounded by its f-vector. From this, we derive an infinite family of combinatorially distinct 69-dimensional polytopes whose realization is unique up to projective transformation. This answers a problem posed by Perles and Shephard in the sixties. Moreover, our methods naturally lead to several interesting classes of projectively unique polytopes, among them projectively unique polytopes inscribed to the sphere. The proofs rely on a novel construction technique for polytopes based on solving Cauchy problems for discrete conjugate nets in S^d, a new Alexandrov--van Heijenoort Theorem for manifolds with boundary and a generalization of Lawrence's extension technique for point configurations.Comment: 44 pages, 18 figures; to appear in Invent. mat

    The universality theorem for neighborly polytopes

    Full text link
    In this note, we prove that every open primary basic semialgebraic set is stably equivalent to the realization space of an even-dimensional neighborly polytope. This in particular provides the final step for Mn\"ev's proof of the universality theorem for simplicial polytopes.Comment: 5 pages, 1 figure. Small change

    Universality theorems for inscribed polytopes and Delaunay triangulations

    Full text link
    We prove that every primary basic semialgebraic set is homotopy equivalent to the set of inscribed realizations (up to M\"obius transformation) of a polytope. If the semialgebraic set is moreover open, then, in addition, we prove that (up to homotopy) it is a retract of the realization space of some inscribed neighborly (and simplicial) polytope. We also show that all algebraic extensions of Q\mathbb{Q} are needed to coordinatize inscribed polytopes. These statements show that inscribed polytopes exhibit the Mn\"ev universality phenomenon. Via stereographic projections, these theorems have a direct translation to universality theorems for Delaunay subdivisions. In particular, our results imply that the realizability problem for Delaunay triangulations is polynomially equivalent to the existential theory of the reals.Comment: 15 pages, 2 figure
    corecore